skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Basak, Anup"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The nanoscale multiphase phase-field model for stress and temperature-induced multivariant martensitic transformation under large strains developed by the authors in Basak and Levitas (J Mech Phys Solids 113:162–196, 2018) is revisited, the issues related to the gradient energy and coupled kinetic equations for the order parameters are resolved, and a thermodynamically consistent non-contradictory model for the same purpose is developed in this paper. The model considers N+1 order parameters to describe austenite and N martensitic variants. One of the order parameters describes austenite↔martensite transformations, and the remaining N order parameters, whose summation is constrained to the unity, describe the transformations between the variants. A non-contradictory gradient energy is used within the free energy of the system to account for the energies of the interfaces. In addition, a kinetic relationship for the rate of the order parameters versus thermodynamic driving forces is suggested, which leads to a system of consistent coupled Ginzburg–Landau equations for the order parameters. An approximate general crystallographic solution for twins within twins is presented, and the explicit solution for the cubic to tetragonal transformations is derived. A large strain-based finite element method is developed for solving the coupled Ginzburg–Landau and elasticity equations, and it is used to simulate a 3D complex twins within twins microstructure. A comparative study between the crystallographic solution and the simulation results is presented. 
    more » « less
  2. A thermodynamically consistent multiphase phase-field approach for stress and temperature-induced martensitic phase transformation at the nanoscale and under large strains is developed. A total of N independent order parameters are considered for materials with N variants, where one of the order parameters describes A ↔ M transformations and the remaining N − 1 independent order parameters describe the transformations between the variants. A non-contradictory gradient energy is used within the free energy of the system to account for the energies of the interfaces. In addition, a non-contradictory kinetic relationships for the rate of the order parameters versus thermodynamic driving forces is suggested. As a result, a system of consistent coupled Ginzburg-Landau equations for the order parameters are derived. The crystallographic solution for twins within twins is presented for the cubic to tetragonal transformations. A 3D complex twins within twins microstructure is simulated using the developed phase-field approach and a large-strain-based nonlinear finite element method. A comparative study between the crystallographic solution and the simulation result is presented. 
    more » « less
  3. A general theoretical and computational procedure for dealing with an exponential-logarithmic kinematic model for transformation stretch tensor in a multiphase phase field approach to stress- and temperature-induced martensitic transformations with N martensitic variants is developed for transformations between all possible crystal lattices. This kinematic model, where the natural logarithm of transformation stretch tensor is a linear combination of natural logarithm of the Bain tensors, yields isochoric variant–variant transformations for the entire transformation path. Such a condition is plausible and cannot be satisfied by the widely used kinematic model where the transformation stretch tensor is linear in Bain tensors. Earlier general multiphase phase field studies can handle commutative Bain tensors only. In the present treatment, the exact expressions for the first and second derivatives of the transformation stretch tensor with respect to the order parameters are obtained. Using these relations, the transformation work for austenite ↔ martensite and variant ↔ variant transformations is analyzed and the thermodynamic instability criteria for all homogeneous phases are expressed explicitly. The finite element procedure with an emphasis on the derivation of the tangent matrix for the phase field equations, which involves second derivatives of the transformation deformation gradients with respect to the order parameters, is developed. Change in anisotropic elastic properties during austenite–martensitic variants and variant–variant transformations is taken into account. The numerical results exhibiting twinned microstructures for cubic to orthorhombic and cubic to monoclinic-I transformations are presented. 
    more » « less